FORMALDEHYDE (HCHO) SENSOR IN RAE SYSTEMS INSTRUMENTS

SPECIFICATIONS, CALIBRATION, ORDERING, AND INSTRUMENT CONFIGURATION OPTIONS

INTRODUCTION
The formaldehyde (HCHO) sensor for RAE Systems MultiRAE family and ToxiRAE Pro gas monitors can be used for a wide variety of applications, such as automobile and chemical manufacturing, construction, indoor air quality, medical, and many others.

SPECIFICATIONS
Sensor and Size Type
4R+ intelligent sensor (stores calibration information, alarm limits and other relevant data)

- **Range:** 0 to 10ppm
- **Resolution:** 0.05 ppm
- **Response Time:** T50 < 80 seconds
- **Storage Life:** 6 months in sealed container
- **Warranty:** 1 year from date of shipment

Supported Monitors
- **Single-gas:** ToxiRAE Pro (Model PGM-1860)
- **Multi-gas:**
 - MultiRAE Pro (PGM-6248)
 - MultiRAE (PGM-6228)
 - MultiRAE Lite Pumped (PGM-6208)
 - MultiRAE Lite Diffusion (PGM-6208D)

CALIBRATION INFORMATION

Calibration Gas
- Carbon Monoxide gas (CO, 50 ppm) or
- Formaldehyde gas (HCHO, 9 ppm)

Calibration Sequence
If the HCHO sensor is installed in the same multi-gas instrument as sensors for compounds to which the HCHO sensor has cross-sensitivities, the HCHO sensor should be calibrated first, prior to the other sensors.

ORDERING

The HCHO sensor can be ordered with the new ToxiRAE Pro and MultiRAE family of monitors listed in the “Supported Monitors” section, using the Product Assemble-to-Order (ATO) Configurator provided in the Portables Pricing Guide, or as an individual (replacement) sensor.

HCHO [Replacement] Sensor Ordering Information
- **Part Number:** C03-0982-000

CROSS-SENSITIVITY ISSUES AFFECTING INSTRUMENT CONFIGURATIONS INVOLVING THE HCHO SENSOR

Due to the HCHO sensor’s high cross-sensitivities and long recovery times after its exposure to select compounds (especially when the sensor is installed in multi-gas monitors like the new MultiRAE), some sensor combinations cannot be supported in one multi-gas instrument. Other sensor combinations may be feasible, but users should take note of the additional operation and maintenance requirements and/or limitations prior to use for specific applications.

<table>
<thead>
<tr>
<th>Cross-Interfering Compound</th>
<th>NH\textsubscript{3} (Ammonia)</th>
<th>CO\textsubscript{2} (Carbon Dioxide)</th>
<th>CH\textsubscript{4} (Methane)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-Interfering Compound</td>
<td>50 ppm</td>
<td>5,000 ppm</td>
<td>50% LEL</td>
</tr>
<tr>
<td>Concentration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCHO Sensor Cross-Sensitivity Level</td>
<td>None/Minimal</td>
<td>None/Minimal</td>
<td>None/Minimal</td>
</tr>
</tbody>
</table>

Configurations without Cross-Sensitivities

Based on the information provided in the previous table, the HCHO sensor has virtually no cross-sensitivity to the following gases, so no related issues should be expected when the HCHO sensor is installed in the same instrument as the following sensors:

- Ammonia (NH\textsubscript{3})
- Carbon Dioxide (CO\textsubscript{2})
- Methane (CH\textsubscript{4}; catalytic bead LEL or NDIR)
Notes:
• Data in the tables within this note are based on the HCHO (formaldehyde) sensor’s cross-sensitivity to a single gas of certain concentration.
 - Mixtures of gases were not tested, and results with mixed gases are unpredictable.
 - Cross-sensitivities to all the compounds are only valid for a specified concentration and may be different for higher concentrations of the same compound.
• All specifications have been verified under the following environmental conditions: temperature: 68° F (20° C); relative humidity (non-condensing): 50%; ambient pressure: 1 atm (1,013 mbar)

CONFIGURATIONS REQUIRING SPECIAL ATTENTION
The HCHO sensor can be ordered with the sensors listed below, but customers should be aware of the potential issues related to sensor cross-sensitivities and slower recovery times.

- **HCN (Hydrogen Cyanide)** – The HCHO sensor not only has a moderate positive cross-sensitivity to HCN gas, but it can also take up to 20 minutes to recover from exposure to HCN gas.

<table>
<thead>
<tr>
<th>Cross-Interfering Compound</th>
<th>CO (Carbon Monoxide)</th>
<th>H₂ (Hydrogen)</th>
<th>HCN (Hydrogen Cyanide)</th>
<th>N₂S (Hydrogen Sulfide)</th>
<th>C₃H₈ (Isobutylene)</th>
<th>NO (Nitric Oxide)</th>
<th>PH₃ (Phosphine)</th>
<th>SO₂ (Sulfur Dioxide)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-Interfering Compound Concentration</td>
<td>50 ppm</td>
<td>200 ppm</td>
<td>10 ppm</td>
<td>10 ppm</td>
<td>100 ppm</td>
<td>25 ppm</td>
<td>5 ppm</td>
<td>5 ppm</td>
</tr>
<tr>
<td>HCHO Sensor Cross-Sensitivity Level</td>
<td>Moderate positive</td>
<td>Minimal</td>
<td>Moderate positive</td>
<td>High positive</td>
<td>High positive</td>
<td>Slight positive</td>
<td>High positive</td>
<td>Moderate positive</td>
</tr>
<tr>
<td>HCHO Sensor Cross-Sensitivity Approximate Value</td>
<td>20%</td>
<td>1-2%</td>
<td>25%</td>
<td>150%+</td>
<td>100%+</td>
<td>10%</td>
<td>100%+</td>
<td>30%</td>
</tr>
</tbody>
</table>

PROBLEMATIC CONFIGURATIONS
Due to HCHO sensor’s negative cross-sensitivities (a potential safety threat!) to respective gases specified below, the users should exercise caution when using the HCHO sensor in the same instrument as the following sensors:

- **Chlorine (Cl₂)**
- **Nitrogen Dioxide (NO₂)**

<table>
<thead>
<tr>
<th>Cross-Interfering Compound</th>
<th>Cl₂ (Chlorine)</th>
<th>NO₂ (Nitrogen Dioxide)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-Interfering Compound Concentration</td>
<td>1 ppm</td>
<td>5 ppm</td>
</tr>
<tr>
<td>HCHO Sensor Cross-Sensitivity Level</td>
<td>Moderate negative</td>
<td>Moderate negative</td>
</tr>
</tbody>
</table>

Note: From a safety standpoint, a negative cross-sensitivity may present a higher risk than a positive one, as it will diminish a sensor’s response to the target gas and so prevent an alarm.

OTHER CONFIGURATIONS
Customers wishing to order MultiRAE instruments with any other sensor combination involving the HCHO sensor should contact RAE Systems.