1. INTRODUCTION & 2. ASSOCIATED DOCUMENTATION

1. INTRODUCTION

Sensepoint is designed for the detection of toxic gases and is designed for use with an approved junction box. It employs an electrochemical cell sensor device which is gas specific and used as part of a 4-20mA loop powered measuring circuit. The sensor includes a voltage clamp within a sealed Ex enclosure and an electrochemical cell driver and cell within an IS portion of the sensor.

Different sensor versions detect different gases. Sensors are available for the detection of H₂S, Cl₂, CO, NH₃, H₂, SO₂, NO, NO₂, O₂. The sensor is available in M20, M25, or 3/4 NPT thread versions. All accept accessories from the specified range. Should you require information outside the scope of these instructions please contact Honeywell Analytics Ltd.

This product is certified for use in hazardous areas and is protected against water and dust ingress to IP65, or IP67 if approved weather protection is fitted.

2. ASSOCIATED DOCUMENTATION

Refer to the relevant control system manual for connection information.
3. SAFETY

2.1 WARNINGS

- This apparatus is not suitable for use in oxygen enriched atmospheres (>21%v/v). Oxygen deficient atmospheres (<8%v/v) may suppress the sensor output.
- Refer to local or national regulations relative to installation at the site.
- The operator should be fully aware of the action to be taken if the gas concentration exceeds an alarm level.
- The ECC (electrochemical cell) contains a small quantity of acid.
- Installation should consider not only the best placing for gas detection related to potential leak points, gas characteristics and ventilation, but also where the potential of mechanical damage is minimized or eliminated.
- Only assessed by ATEX for ignition hazards.
- Electrostatic risk - Do not rub or clean with solvents. Clean with a low velocity air blower and dusty environments can cause hazardous electrostatic charges.

2.2 CAUTIONS

- Exposures to gas above the design range of the sensor may require the sensor to be recalibrated.
- Do not modify or alter the sensor construction as essential safety requirements may be invalidated.
- Install Sensepoint using certified Ex d or Ex e junction box, connectors and glands.
- Sensors should be disposed of in accordance with local disposal regulations. Materials used: Sensor: Fortron® (PPS-polyphenylene sulphide), Cell: PPO (modified polyphenylene oxide).
- This equipment is designed and constructed as to prevent ignition sources arising, even in the event of frequent disturbances or equipment operating faults. This equipment is designed and constructed as to prevent ignition sources arising, even in the event of frequent disturbances or equipment operating faults. The internal electrical input is protected with a fuse.
- The apparatus should be installed in a location free from dusts and direct heat sources.
- For optimum protection against water ingress ensure that the sensor is installed facing downwards.
- Installation is to be performed by a qualified installation engineer, with the power to the unit disconnected.
- For oxygen versions, remove the neoprene stopper and snap the FRI screen and internal hydrophobic assembly (supplied separately) into place (page 10).

See the technical handbook for details of installation in a duct or in forced air conditions.

3. OPERATIONS

4. OPERATIONS

4.1 INSTALLATION

The Unit should be fitted to a junction box certified Ex d or Ex e, and fitted with an approved cable gland and connector block. The sensors should be fitted to a tapped hole within the enclosure and locked in place with a locknut if the parallel thread version is being used. Cabling should be multicore, two wires plus screen, conductor size 2.5mm² (1-AWG) max. Sensors are supplied pre-calibrated.

The apparatus should be installed in a location free from dusts and direct heat sources.

For optimum protection against water ingress ensure that the sensor is installed facing downwards.

Installation is to be performed by a qualified installation engineer, with the power to the unit disconnected.

For oxygen versions, remove the neoprene stopper and snap the FRI screen and internal hydrophobic assembly (supplied separately) into place (page 10).

See the technical handbook for details of installation in a duct or in forced air conditions.

4.3 FAULT FINDING

Sensor reads non-zero all the time:

- Gas could be present, ensure that there is no target gas in the atmosphere. Background or other volatile organic gases, e.g. solvents, can interfere with the operation of the sensor.

Sensor reads non-zero when no gas is present:

- Check the wiring.

Sensor reads low when gas is applied:

- Adjust the span on the control card.

Sensor reads high when gas is applied:

- Adjust the span on the control card.

Sensor reads zero when gas is applied:

- Check the wiring.
- Check the dust protection cap has been removed.
- Check that the sensor is not obstructed.
- Replace the sensor if failure is suspected.
- For oxygen versions, check that the neoprene plug has been removed from under the plastic retainer.

Cannot adjust span or zero at control card:

- Refer to the technical handbook.

5. MAINTENANCE

4.1 INS

• Cannot adjust span or zero at control card:
 • Refer to the technical handbook.

4.3 FAULT FINDING

Table 1:

<table>
<thead>
<tr>
<th>Gas</th>
<th>Range</th>
<th>Recommended</th>
<th>Realised</th>
<th>Application</th>
<th>Working</th>
<th>Time</th>
<th>Operating</th>
<th>Temp.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂</td>
<td>0 to 25 ppm</td>
<td>10 ppm</td>
<td>10 mins</td>
<td>3 mins</td>
<td>20°C to 50°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂</td>
<td>0 to 50 ppm</td>
<td>20 ppm</td>
<td>10 mins</td>
<td>3 mins</td>
<td>20°C to 50°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂</td>
<td>0 to 100 ppm</td>
<td>30 ppm</td>
<td>10 mins</td>
<td>3 mins</td>
<td>20°C to 50°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>0 to 150 ppm</td>
<td>50 ppm</td>
<td>10 mins</td>
<td>3 mins</td>
<td>20°C to 50°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>0 to 200 ppm</td>
<td>100 ppm</td>
<td>10 mins</td>
<td>3 mins</td>
<td>20°C to 50°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>0 to 500 ppm</td>
<td>300 ppm</td>
<td>10 mins</td>
<td>3 mins</td>
<td>20°C to 50°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl₂</td>
<td>0 to 5 ppm</td>
<td>1 ppm</td>
<td>10 mins</td>
<td>3 mins</td>
<td>20°C to 50°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl₂</td>
<td>0 to 15 ppm</td>
<td>10 ppm</td>
<td>10 mins</td>
<td>3 mins</td>
<td>20°C to 50°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl₂</td>
<td>0 to 25 ppm</td>
<td>25 ppm</td>
<td>10 mins</td>
<td>3 mins</td>
<td>20°C to 50°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O₂</td>
<td>0 to 25% v/v</td>
<td>5% v/v</td>
<td>10 mins</td>
<td>3 mins</td>
<td>-15°C to +40°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO₂</td>
<td>0 to 50 ppm</td>
<td>25 ppm</td>
<td>10 mins</td>
<td>3 mins</td>
<td>20°C to 40°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO₂</td>
<td>0 to 1000 ppm</td>
<td>500 ppm</td>
<td>10 mins</td>
<td>3 mins</td>
<td>20°C to 40°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂O</td>
<td>0 to 15 ppm</td>
<td>5 ppm</td>
<td>10 mins</td>
<td>3 mins</td>
<td>20°C to 40°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO₂</td>
<td>0 to 50 ppm</td>
<td>5 ppm</td>
<td>10 mins</td>
<td>3 mins</td>
<td>20°C to 40°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td>0 to 100 ppm</td>
<td>50 ppm</td>
<td>10 mins</td>
<td>3 mins</td>
<td>20°C to 40°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.1 CHANGING ELECTROCHEMICAL CELL AND INTERNAL FILTER

1. Unscrew and remove the gas plastic retainer (or accessory if fitted) from the sensor:
2. For the removable sensing cell, remove the external hydrophobic assembly by pushing against the snap fit, through one of the retaining slots, with a flat bladed screwdriver. The assembly will pop out. Do not attempt to lever the assembly out as this may damage the housing.
3. Remove the internal metal gauze insert.
4. Open the enclosure by unscrewing the sensor cap assembly from the sensor main body, ensuring that the electrochemical cell does not rotate with the cap.
5a. Toxic:
 1. Gently pull the old electrochemical cell from the pcb. (Dispose of this in accordance with the local regulations.)
5b. Oxygen:
 1. For oxygen Sensepoint, unscrew the old cell connections. Support the screw pillars during removal and refitting of the oxygen cell screws.
6. Remove the new cell from its packaging and remove the shorting link across the base of cell.
7a. Plug the new cell into the pcb. (Toxic cell)
7b. Screw in the new cell via the metal tabs. (Oxygen cell)
8. Screw the sensor cap assembly back onto the sensor main body.
9. Fit the new internal metal gauze assembly.
10. Fit the new internal hydrophobic assembly.

Note: The sensor should now be recalibrated. See Section 4.2

11. Replace the grey plastic retainer or accessory.
12. In the event of an apparatus failure, return unit to Honeywell Analytics Ltd.

5.2 CHANGING THE EXTERNAL HYDROPHOBIC BARRIER

Remove the plastic retainer (or accessory). Remove the old external hydrophobic barrier and replace with the new one. Replace the plastic retainer.

First zero the control system with no gas present on the sensor. If target gas is suspected to be in the vicinity of Sensepoint, flow clean air over the sensor using a flow housing (see below).

Fit a flow housing and connect a cylinder of either air, for a zero, or a known concentration of gas (approximately 50% FSD) to the flow housing using nylon or PTFE tubing. Tubing lengths should be kept to a minimum to avoid extending the speed of response. Connect the outlet of the flow housing to a safe exhaust area. Pass the gas through the flow housing at a flow rate of approximately 1 to 1.5 l per minute. Allow the sensor to stabilise. When gassing with air, adjust the control card to indicate zero.

For span, the control card should be adjusted to indicate the concentration of the target gas being applied. Remove the flow housing and the gas supply.

Note: for oxygen, the span gas is normally air at 20.8%v/v O₂. The control card should be adjusted to indicate this when the sensor is in either clean ambient air, or in a flow of 20.8%v/v O₂ in nitrogen from a cylinder. A zero adjustment is not normally required, however it is recommended that the alarm levels are tested using a cylinder of a lower concentration of oxygen in nitrogen.

See Table 1 for details of concentrations and times to be used. If the controller cannot be spanned, consult the technical handbook.

For calibration using the Weather Protection in high flow applications refer to the technical handbook.